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Mass transfer between a flowing region and an adjacent stationary medium can 
greatly alter the overall contaminant dispersion. Here, an extension is given of 
Taylor’s (1953) method to encompass this class of complications. The only 
mathematical assumption made is that  the mass flux transfer a t  the boundary 
depends linearly upon the concentration at earlier times. Expressions are derived for 
the longitudinal shear dispersion coefficient. Detailed results are presented for the 
effects both of reactions and of retention a t  the bed upon contaminant dispersion in 
turbulent open-channel flow. 

I .  Introduction 
The problem of retention effects of dispersing contaminant a t  flow boundaries is 

common to many fluid flows and has several important applications in diverse fields 
such as biology, physiology, chromatography, chemistry and environment fluid 
mechanics. 

The respiratory gas exchange between the body and its surroundings requires the 
inspired air to be heated to body temperature and humidified to saturation on its 
passage through the lung. This process and the removal of noxious gases (or 
particulate materials) involve mass transfer between the airstream and the walls of 
the respiratory tract. The analytical tool of gas chromatography employs a 
stationary gas phase deposited as a thin retentive layer on the inner wall of the 
tubular column. In  a wide variety of problems of chemical engineering gaseous 
dispersion takes place with simultaneous chemical reaction. It is not uncommon for 
reactions carried out in a tubular reactor to be catalysed ~ deliberately or 
inadvertently ~ on the wall. The simple observation of a natural stream provides 
clear visual evidence how the contaminant is entrained into the dead zones which are 
caused by the meandering nature of streams and the long-term build-up of plant 
materials in the banks. Systems of less well-defined geometry are also frequently 
encountered, for example, an industrial pipe line in which stagnant fluid collects in 
the crevices of flanges, or a t  hollows of a corroded surface. 

There are various forms of boundary conditions representing exchange between 
the main flow and the adjoining immobilized region. Some of these are listed in 9 1.1. 
A generalization of these boundary conditions is presented in 9 1.2. 

1.1. The variety of boundary conditions 
I n  the context of chromatography, Golay (1958) studied the dispersion of a gas 
flowing in a tubular column in which the inner walls of the column are coated with 
a thin uniform retentive layer. For the cases of rapid adsorption and desorption of 
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material, with concentration c, on and from the tube wall, the appropriate boundary 
condition a t  the tube wall is (Golay 1958, equation 8) 

2D’ 
YO 

- a T c  = - k ’ a , c ,  a t  r = ro,  (1.1) 

where k‘ is the ratio of the amount of material adsorbed on the walls to that in the 
gas phase, and D‘ is the molecular diffusion coefficient. 

The dispersion of a very reactive species (hydrogen atoms) in a gas flowing in a 
circular quartz tube, reported by Boddington & Clifford (1983), requires a further 
treatment that takes into account irreversible loss of the reactive species by reaction 
on the tube wall. I n  this situation the boundary condition a t  the tube wall is 
(Boddington & Clifford 1983, equations 1.6 and 1.7)  

(1.2) 

where p is the rate of loss of reactive species on the tube wall. The surface 
concentration, c,, of the reactive species changes a t  a rate given by 

k’a,c ,  = k , c - k , c , ;  (1.3a) 

here k ,  and k ,  are the rate of adsorption and desorption at the tube wall, respectively. 
In  the limit of no loss of reaction species on the walls (Boddington & Clifford 1983, 

(1.3b) 

Davidson & Schroter (1983) have studied the pattern of dispersion and uptake of 
an inhaled slug of tissue-soluble gas within a branching model of the bronchial wall, 
considered as an assembly of straight rigid tubes with absorbing wall of finite 
thickness. The airways are defined by two concentric circular cylinders. The inner 
cylinder defines the flowing gas phase while the annulus is the bronchial wall, 
considered for convenience as a stationary homogeneous liquid rather than a tissue 
compartment of unknown properties. The appropriate boundary condition a t  the 
gas-tissue interface is (Davidson & Schroter 1983, equation (:!a, b))  

D; a, c2 = D; a, cl .  (1.4) 

Also, the injected solute is soluble in tissue, according to an approximately linear 
equilibrium relation at the gas-tissue interface 

c, = k,c , ,  (1.5) 

where c, and c2 are solute concentration in the gas and the tissue respectively, for 
which the corresponding molecular diffusion coefficients are D; and D;, and k,  is the 
solubility coefficient. 

Fischer (1967) gave details of the variation of contaminant concentration, c, in an 
open-channel flow over its depth, and showed that a t  large times, the contaminant 
is concentrated near the bottom of the channel, and it is in this region that the 
differences between c and the value predicted are most marked. These observations 
suggest that  the mechanism of the dispersion process in the region near the bed, such 
as the retentive (viscous sub-) layer, is important. To illustrate this effect of the 
viscous sublayer on longitudinal dispersion, Chatwin (1973) assumed that the flow 
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field is sharply divided into two layers of fluids with molecular diffusivities K~ and 
K~ and that contaminant can be exchanged between the two layers only by molecular 
diffusion (see also Elder 1959). Then the appropriate boundary condition across the 
sublayer surface is (Chatwin 1973, equation 3.5iv) 

K1 ay C = K 2  ?JY C, K1 4 K 2 .  (1.6) 

The vertical mixing outside the retentive layer is dominated by turbulent velocity 
fluctuations, but within the retentive layer and suffciently close to the bed the 
lateral mixing is essentially caused by molecular diffusion, since the velocity 
fluctuation falls to zero a t  the bed. This is difficult to quantify in view of the 
ignorance of the mechanics of the motion in the retentive layer. Purnama (1988) 
modelled the retentive layer as a random distribution of stagnant pocket of variable 
depths. 

Storage in the retentive layer bears much the same relation to dispersion in two- 
dimensional flow as does storage in the dead zones to dispersion in the main flow part 
of a natural stream. In particular, for natural streams, the interstitial volume of the 
stone bed could have formed a dead zone for zero velocity in which temporary 
storage of the contaminant occurred. These dead water regions may significantly be 
isolated from the main stream. Valentine & Wood (1977) analysed numerically the 
effect of stationary eddy structure adjacent to the bed upon longitudinal dispersion 
in two-dimensional open-channel flow. The boundary condition at  the bed requires 
an interchange of concentration between the dead zones and the main flow, and it is 
assumed that the mass transfer across the interface is proportional to the 
concentration difference across it, namely 

(1 .7 )  K’ a, C = a ( C  - Cd), 

here K’ is the eddy diffusivity, and the mean concentration in the dead zones cd is 
governed by 

a t C d  = y ( C - c 6 ) .  

The exchange parameters a,  y relate to the relative volume of the dead zones and to 
the mixing process. 

1 2 .  Uni$ed treatment 
A common phenomenon in all the cases described above is that the contaminant 
which migrates into the retentive layer is (more generally captured and) released 
some time after passage of the main part of the contaminant cloud. I n  this paper, the 
boundary retention effect upon the contaminant dispersion is analysed using an 
extension to  the method used by Taylor (1953), with the assumption that the rate of 
contaminant flux across the retentive layer is proportional to the concentration a t  
earlier times. This leads us to pose a provisional boundary condition, a t  the flow 
boundary CIA, 

K ~ I . V C  = - J ( ~ ) c ( t - - ) d 7  on aA, (1.9) I: 
where K is the transverse diffusivity tensor, and the kernel J ( T )  measures the diffusive 
effect of the time-lag between the contaminant concentrations across the retentive 
layer. Note that we do not prescribe the mechanisms of motion and dispersion within 
the retentive layer, but all these are embodied within J ( 7 ) .  The retentive layer is a 
representation of all the dead zones within the river, on the bed, and along the banks, 
being spread into an equivalent uniform thickness on the river banks. 
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If we denote a Laplace transform by a hat, then a general form of the boundary 
condition (1.9) for the exchange between the flow and the surrounding immobilized 
medium is 

There is considerable freedom in the way that the boundary condition can be written. 
In  particular, we can write 

K n . V E  = -J^(O)c^-pf(p)C: on aA, (1.11 a,) 

Kn.Vc^ = -j(p)c^ on aA. (1.10) 

where (1.1 1 b )  

The advantage is that for large p the new kernel f(p) is better behaved than J^ ( (p ) .  
Inverting the Laplace transform, we derive the boundary condition 

* 

(1.12) 

This particular formulation of the boundary conditions has the advantage of being 
an obvious generalization of the boundary conditions given in the previous 
subsection. For example, the Boddington & Clifford (1983) boundary conditions 
(1.2), (1.3) correspond to 

J^o) = p, 1(7) = IC, exp ( -- 3). 

s:; K n - V c  = --J(O)c-a, 1(7)c( t -~)d7  on aA. 

(1.13a, 6 )  

The dead-zones model (1 .7) ,  (1.8) has a similar exponential structure : 
* 

J ( 0 )  = 0, 1(7) = a exp (-77). (1.14a, b )  

When the concentration within the retentive layer is governed by partial (rather 
than ordinary) differential equations the structure of 1(7) is more complicated (see 
Appendix). It would be straightforward to adapt the analysis presented in this paper 
to encompass other formulations of the boundary conditions. 

2. Advection-diffusion equation 
In  keeping with the generality of the dispersion concept, we start our mathematical 

analysis with the advectiondiffusion equation for the contaminant concentration 

a,C+Ua,C-V*(KVC) = 0, ( 2 . l a )  
c(x, y, 2, t )  : 

with the boundary condition 

K n - V c  = - p c - a ,  1 ( 7 ) c ( t - - 7 ) d ~  on aA, (2 . lb)  

where u ( y ,  z )  is the longitudinal velocity directed along the x-axis, K(Y, z )  the 
transverse diffusivity tensor, V the transverse gradient operator (0, aV, aZ) ,  and n the 
outward normal. 

We have ignored direct longitudinal diffusion, on the assumption that after a short 
distance downstream it is dominated by shear dispersion (Taylor’s 1953 Condition 
A). The term -be on the right-hand side of the defining boundary condition (2.1 b )  
represents an irreversible (possibly catalysed) boundary reaction, which reflects the 
effect of contaminant removal. The case when /3 = 0 is usually referred to as the 

s: 
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dispersion of a passive (neutrally buoyant and chemically inert) Contaminant. 
Subsequently, the case of /3 + 0 can be referred to  as the dispersion of reaction (or 
chemically active) contaminant. In contrast, the second term on the right-hand side 
of (2.1 b )  represents a non-absorbing conservative boundary term, which measures 
the amount of contaminant held in the stationary medium. 

In the steady state, (2.1 a )  admits an exponentially decaying solution exp ( -Ax)  
with a corresponding non-negative asymptotic profile $( y, z )  for the concentration 
variation across the entire flow: 

v*(Kv$)+A?l$ = 0, (2.2a) 

with Kn.V$ = -p$ on aA, (2 .2b )  

p=1, $20. (2.3c, d )  

In the problems of heat transport through the cooling circuits of nuclear reactors, or 
more generally, in any heat exchanger circuit, the boundary condition (2.3 b )  
represents the leakage of heat from the thermal (wall) conductor (Lungu & Moffatt 
1982). The combined effects of diffusion and boundary adsorption are to erode the 
concentration variations towards this equilibrium profile $(y, z ) .  Note that the total 
contaminant in the flow is no longer a conserved quantity. The corresponding 
asymptotic decay rate can be written in terms of the interior and boundary values 

- 

of $(y, 2) : 

m+;j& 
A =  (2.3) .1c." 

where $ denotes an integration around the flow boundary aA. No matter how small 
the value of A,  at  sufficiently large time after discharge it is this decay rate that 
determines the total amount of contaminant remaining in the flow. In  (2.3) the 
overbars denote the cross-sectional average values, and A is the cross-sectional 
areas. 

As a temporary expedient, it is convenient to factor out this intrinsic decay, and 
the intrinsic asymptotic concentration profile, by means of a change of dependent 
variable 

c = $(y, z )  C(x,  y, z ,  t )  exp (-Ax). (2.4) 

The new dependent variable C(x ,  y, z ,  t )  satisfies the advection-diffusion equation 

$' a, c! -k 'WP a, c! - v .  ($'KVc) = 0,  (2.5a) 

with (2.56) 

No approximations have been made. The advantage of (2.5a, b )  over (2.1 a ,  b )  lies in 
the simplicity of the solution for C(x ,  y, z ,  t )  a t  large distances downstream. 

The initial discharge distribution of C(x, y, z )  is not expected to affect the general 
conclusions (provided there is not extremely slow exchange between the main flow 
and the retentive layer), and therefore for simplicity it will be assumed that 
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3. The extension of Taylor's (1953) method 
Taylor (1953) imposed two conditions to analyse the dispersion of soluble matter 

in solvent flowing through a tube. These are: 
(A) The changes in C due to  convective transport along the tube take place in a 

time that is so short that the effect of molecular diffusion may be neglected. 
(B) The time necessary for appreciable effects to appear, owing to convective 

transport, is long compared with the 'time of decay ' during which radial variations 
of concentration are reduced to a fraction of their initial value through the action of 
molecular diffusion. 

To study slow evolution of the contaminant distribution it is convenient to use 
axes moving a t  the bulk velocity 0. In  keeping with the work of Taylor (1953) and 
of Fischer (1967), we assume that the timescale upon which we are studying the 
dispersion process is sufficiently long that the contaminant is nearly uniformly 
distributed across the entire flow. So that, in the moving coordinate system, 

6 = E ( X -  Ut) ,  (3.1 a )  

T = €9, (3.1 b )  

any evolution of the bulk concentration is associated with dispersion and not merely 
the non-uniform advection. The presence of the parameter E serves to indicate that 
the longitudinal lengthscale c of the contaminant cloud is to be thought of as being 
much longer than the lengthscale x for mixing across the channel. with a 
correspondingly slow timescale T for the longitudinal dispersion. 

- 

In the (6,T)-coordinates, (2.5a,  b )  for C(6, y , z , T )  become 

- v*  ($2Kvc) -k C$'(CU- 0) a$? + E 2 $ ' a ,  C = 0, ( 3 . 2 ~ )  

with 

For small E the memory term can be expanded 

$'Kn-VC! = e0$' 117) a6C dr  -E'$' 1(7)  (a, C- 0'7 C) d7+. . . . ( 3 . 2 ~ )  

We again make explicit use of the fact that  e is small and formally expand the 
solution to ( 3 . 2 ~ .  b )  in t,he form 

c = ~ , ( c .  T )  + ec,(g, y, 2, T )  + ~ ~ ( 6 .  y, 2, T )  + . . . . (3.3) 

where the C, are all independent of e. For simplicity we shall ignore possible E- 

dependence of the transverse diffusivity tensor ~ ( y ,  2). To leading-order terms, 
(3.2~4, b )  are satisfied trivially if C, is laterally well mixed. (Indeed, we can identify 
C, with the cross-sectional average concentration $'C.) Also without loss of 
generality, we can require that the correction terms C,, C,, . . . give no net contribution 
to  the concentration when $2-weighted integrated over the entire flow. 

From (3.2a, b )  it follows that to first approximation C ,  satisfies the equation 

~ 

v- ($~Kvc , )  = ( l d 7 ) $ 2 a g C o ,  (3.4a) 
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with 

- 
and $2C1 = 0. (3 .4c)  

By integrating ( 3 . 4 ~ )  over the entire flow, using (3.4b), we derive the bulk 
velocity 

Note that 0 is a fraction smaller than the asymptotic advection velocity p. As the 
contaminant cloud moves forward the retention of contaminant a t  the flow 
boundary removes contaminant to the retentive layer a t  the front and unloads 
contaminant into the flow at the rear. The quantity Yo depends only upon the 
integral around the flow boundary of the product of the asymptotic concentration 
$2 and the total volume retention 

10*1(7) d7. 

On the right-hand side of (3 .4a)  the a,Co factor can be regarded as remaining 
constant on the x-lengthscale. This leads to a gradient formula: 

where the auxiliary function G(y, z )  describes the balance between shear and diffusion 
and satisfies 

V . ( $ 2 ~ V G )  = - ( ~ - 1 ? ) $ ~ ,  (3 .7a)  

with 

and 

VKn- VG = - o$2 
n = o .  

(3.7b) 

( 3 . 7 c )  

The normalization ( 3 . 7 ~ )  restates that C, does not contribute to the total average 
concentration, Note also that, from (3 .6) ,  G(y,z)  gives the shape of the longest 
persisting concentration profile across the entire flow, usually referred to as the shape 
factor. 

In order to assess the role of the boundary retention effect (Purnama 1988), we 
decompose G(y ,z ) ,  into parts associated with the velocity shear u(y ,z )  and the 
retention effect, 

The conventional (no retention, i.e. I(T) = 0) centroid displacement function g(y, z )  is 
the solution of the diffusion equation 

V.($k2Kvg) = - ( U - v ) $ 2 ,  (3 .9a)  

with $h2K?Z-vg = 0 on aA, (3.9b)  

and - = o .  (3.9c) 
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Note that g(y, z )  tends to be positive where u ( y ,  z )  exceeds the asymptotic advection 
velocity 3 (see figure 4). On the other hand the term associated with the boundary 
retention f ( y ,  z )  satisfies 

V.($'Kvf) = (3.10a) 

with $,Kn-Vf = A@ on aA, (3.106) 

and pf= 0. ( 3 . 1 0 ~ )  

The equivalent form of (3.9a-c) and (3.10a-c) for the passive contaminant, r,+ = 1, 
are given by equations (4.4a-c) and (4.8~1-c) respectively of Yurnama (1988). 

~ 

4. Longitudinal dispersion equation 
The vital contribution of Taylor (1953) to the theory of contaminant dispersion 

was to recognize that, without the C, correction term in the presentation (3.3), there 
is no shear dispersion, only the comparatively weak mechanism of direct longitudinal 
diffusion. In  (2.1 a, 6) we have already neglected direct longitudinal diffusion. As long 
as there is somt: concentration variation across the entire flow, the different velocities 
in different prtrts of the flow provides an efficient mechanism for longitudinal 
dispersion. Thus the role of C, is highlighted when we cross-sectionally average 
(3.2a, b )  to derive an evolution equation for C,: 

(4.1 a )  
Mathematically this can be recognized as a non-secularity condition which ensures 
that the solution for C,  has no systematic growth with respect to  x. Here 9l denotes 
the first moment of 1(7), that is 

4 = - $' 71(7)d7. (4.16) 

Substituting (3.6) into (4.1 a), we arrive a t  the longitudinal shear dispersion 

' A  ' I  s: 
equation 

C, = 0. (4.2) 

If we multiply (3.7a) by G(y, z )  and integrate over the entire flow, then we can derive 
the identity 

(u -o )@,G-U-  A $'G 1(7)d7 = $ ' K ( V G ) ~ .  (4.3) 
- f low 

Thus, we can rewrite (4.2) as 

where the longitudinal shear dispersion coefficient D is given by 

+'K (VG) + 0'9, D =  
1 +9, (4.5) 

This is strictly non-negative. 
The extension to the work of Taylor (1953) has now been made, and this is easily 

checked in (4.5). For the passive contaminant, $ = 1, and with no retention a t  the 
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flow boundary, 1 ( 7 )  = 0, i t  reduces to that well-known Taylor longitudinal shear 
dispersion coefficient. Note also that the second term in the numerator represents 
explicitly the contribution of the dispersion in the retentive layer. It involves only 
the retentive-layer properties, and is independent of the main flow velocity profile 
u(y, 4. 

Alternatively, using the decomposition (3.8), we obtain 

@$ $$2(8ff90)j:r(r)d7 (u$2)2 ~ 9, 
(1+Yo)20 = (u-ip)$2g+u1cr"fYo- + 

1 +,ao l+Yo . 
(4.6) 

For the open-channel flow (see $5), and from (3.9a, 6)  and (3.10a, b ) ,  we note 
that 

(4.7a) 

and (4.76) 

A further integration of (4.7~2, b ) ,  using the constraints ( 3 . 9 ~ )  and (3.10c),  and 
rearranging terms, yields the solution 

g- f=  vi dy&( I$ 'dy 'Y on y = 0. 
-h 

(4.7c) 

It is now straightforward to obtain a formula for D ,  which only involves the velocity 
u ( y ) ,  diffusivity ~ ( y ) ,  and asymptotic concentration $(y) profiles : 

Again, in the limit of zero retention, this reveals the crucial role of the velocity shear 
u(y) ,  and the strong weighting towards parts of the flow with large $(y) or small K ( Y )  

(Smith 1986, equation (4.8)). Note that, in this case 

P J ( 7 )  d7 (n  = 0,1,. . .). (4.9) 

5. Turbulent open-channel flow 
One of the commonest applications of the theory of longitudinal dispersion has 

been to turbulent open channels, rivers and canals. Here we shall consider the 
retentive layer to be stagnant ; as shown in the Appendix this is a good approximation 
to the dead-zone model, which takes into account the stationary eddies trapped 
behind roughness of the bed in an open-channel flow. 



402 A .  Purnama 

For straight channels the turbulent diffusivities for mass and momentum scale as 
the product of the water depth h and the friction velocity u* (Elder 1959; Pischer 
1967). Then. the velocity and diffusivity can be modelled as (Smith 1986, equations 
(6.1 ad)) 

with 

(5.1 a )  

K = Ehu*q(l-r), (5.1 6) 

(5.1 c ,  d )  

Here ti is the discharge velocity, the von Karman's constant k is equal to  about 0.4, 
and q* is a dimensionless roughness height. Typically u* is about &,ti, which implies 
that q* is about 0.001. As pointed out by Chatwin (1970) there are severe faults with 
the representations (5.1 a,  b )  : the validity of Reynolds analogy which gives ~ ( 7 )  is 
suspect, the form of u(7) neglects the important viscous sublayer, and turbulent flow 
may not have been truly two-dimensional because of the presence of the sidewalls. 
(The model ignores the retention a t  the free surface.) In  spite of these remarks, 
dispersion in turbulent flow in a channel has been widely studied by engineers in 
many practical contexts using these equations. 

If we ignore terms of order q*, then the asymptotic concentration profile equation 
( 2 . 3 ~ )  transforms to 

(5.2b) 

In the limit of zero roughness, we can ignore the boundary condition ( 2 . 2 b )  and the 
solution is trivially $ = 1. 

To leading order the boundary condition ( 2 . 2 b )  a t  the bed becomes 

(5.3a) 

where the irreversible loss of contaminant a t  the bed is determined by the bed 
absorption coefficient (Smith 1986, equation ( 6 . 5 ~ ) )  

(5 .3b )  

Using the fact that there is an implicit small parameter (u*/ti), we pose an 
expansion 

+ =  1+ - $+..., t;;) (5.4a) 

where the correction term $ satisfies 

with 
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in turbulent open-channel flow. 
1. The dependence of the asymptotic loss rate h upon the bed absorption coefficient B 

Thus, without loss of generality, we take the solution to be 

with 
B 

1+B' 
'(1 = __ 

The dots indicate neglected terms of order ( u * / t ~ ) ~ .  
The asymptotic loss rate (5.2 b )  is given by 

(5.5U) 

(5.5b) 

For large B, the finite concentration gradient limits the diffusive flux of contaminant 
towards the bed, hence the loss rate asymptotes to a constant (figure 1) .  As pointed 
out by Smith (1986). in the limit of total absorption (B+ C O )  the e-folding distance 
is about 225 times the water depth. The asymptotic concentration profile ll/(r) ( 5 . 5 ~ )  
is shown in figure 2 for U * / U  = & and k = 0.4. The main effect of the efficient removal 
of contaminant a t  the bed is, therefore, to bring the concentration close to zero at  the 
bed. At the bed itself we have a neat result: 

1 
3=1+B on y = r*. (5.7) 

As indicated by the logarithmic term in (5 .5a) ,  the effect of the boundary 
absorption is predominantly local to the bed. Thus, we might expect that there is 
only small change to the bulk velocity 0. If we quantify the bed retention volume 
in t'erms of a parameter S, as 

lomI(7)d7 = t ? h ( z ) ,  

Y0=S ( ~ )2("). 
l + B  ka 

( 5 . 8 ~ )  

t'hen (5.8b) 
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FIGURE 2. The asymptotic concentration profile across the flow when the bed absorption 
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FIGURE 3. The dependence of the bulk velocity 6 upon the bed absorption coefficient B,  when 
the bed retention layer depth has the values S = 0, 0.1 and 0.2. 

This parameter S can also be related to the retentive stagnant layer of depth 1 (see 
Appendix) : _ _  

I S  
h - g '  
_ -  

At the leading order, we obtain 

(5 .8~)  

(5.8d) 

Figure 3 shows the bulk velocity 0 as a function of the bed absorption coefficient B 
as the retention-layer depth increases. We observe that in the absence of bed 
absorption (i.e. B = 0) ,  0 decreases (because of the involvement of contaminant in 
the retentive layer) by an amount that increases in the retentive-layer depth. That 
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is, the larger the retention volume, the more time a passive contaminant spends there 
(Valentine & Wood 1977). 

To quantity the effect of bed retention we need to evaluate the centroid 
displacement function G(7). Again, we use an expansion 

to solvc (3.9a-c) for ~ ( 7 ) .  Unfortunately, it is not possible to express the conventional 
(no-retention) centroid displacement function q(O)(q) in closed form (Smith 1982, 
equation (9.7)). Following Smith (1982), if we introduce eigenfunctions c,(r) for 
diffusion across the flow, then the longitudinal velocity profile has the representation 

(5.10) 

(5.1 1 b)  

where Pm denotes the Legendre polynomial of degree m. Eext, a t  leading order, the 
eigenfunction expansion solution for g(O) ( r )  is given by 

(5.12) 

Similarly, we can infer that the term associated with the bed retention f ( r )  has 

(5 .13~)  

Prom (3.10a-c) we find 

(5.13b) 

Hence, from (3.8), a t  leading order, the centroid displacement function G ( r )  
satisfies 

(5.14) 

In the limit of total absorption, i.e. as B +  MI, this approaches the conventional no- 
retention centroid displacement g(O)(T) (see figure 4a-c). As we have already seen in 
figure 2, the contaminant almost does not 'feel' the presence of the bed retention. On 
the other hand, when B = 0, the development of backwards displacement close to the 
bed is due entirely to the retention cffect a t  the bed. 

Smith (1981) pointed out that Taylor's (1953) Condition B can readily be adapted 
to apply to an open-channel flow, since the eddy diffusivity (5.1 b)  is modelled as 
tending to zero at  both the free surface and the channel bed. Chatwin (1971) argued 
that the time taken to sample the whole cross-section should be greater than h/u,  
(since the lateral mixing sufficiently closed to the bed is dominated by molecular 
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FIGURE 4. The dependence of the centroid displacement function G ( r j  upon the channel depth when 
there is a retention a t  the bed: S = O(-) ;  O.l(. . . . . j ;  and 0.2(----). The bed absorption coefficient 
B has the values ( a )  B = 0 ;  (b )  0.5; and (c) 1. 



FIGURE 

Boundary retention effects upon contaminant dispersion 

0.4 1 I I 

0 0.1 0.2 

Retention layer depth, d 

The dependence of the e-folding time T, upon the bed retention-layer dc 
the bed absorption coefficient B has the values B = 0, 0.5 and 1 .  

407 

th,  when 

processes) by an amount that increases as the height of the viscous sublayer 
increases. In other words, an important role is played by the retention layer mixing 
time, Ti. We estimate this in the manner suggested by Valentine & Wood (1977) that 

is the same proportion of T, as the bed retention volume is of the total volume: 

(5.15a) 

where the main flow mixing time T, is formulated by Purnama (1988, $ 7 ) :  

(l+Yo)T, = (g +f $o)"z (5.15b) 
( u - i p )  +."g+.9"fYo' 

Note that T, is the timescale for establishment of the centroid displacement function 
Q(y, z )  in (3.6). At the leading order, using the numerical results obtained by Smith 
(1981, equation (9.12)), we obtain 

+ s ( L ) Z  1+B (o.xox2 + s (.,,,) 1 + H  
(5.16a) 

0.4041 +8(-r 1 
1+B 

This e-folding time is a monotonic increasing function of the bed retention-layer 
depth, as shown in figure 5. It implies (Chatwin 1971) that the retentive effect of the 
flow boundary delays the occurrence of the so-called 'Taylor regime ' for which the 
rate of growth of the variance is linear with time. For B = 0 ,  and 8=0.1  the 
retention layer contributes up to 20 % to the non-retentive T,(6 = 0) value. I n  order 
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to use the Sullivan's (1971) three-stage description of the dispersion process in open 
channels, we note from (5.16a) that 

t = r;)?. 
(5.16 b )  

If we take u/u* = &, k = 0.4, and with the value of the equivalent retentive-layer 
depth estimated in the Appendix, then we obtain 

( 5 . 1 6 ~ )  t e  
- z 1.28. 
k 

Next, using (5 .15~)  the first moment of the kernel I(7) can be estimated as 

(5.17) 

Note that this is entirely a property of the retentive layer. 

coefficient is given by 
From (4.6), the leading-order estimate for the longitudinal shear dispersion 

(5.18) 

The first term on the right-hand side is the conventional (no-retention) shear- 
dispersion coeficient and it has been evaluated numerically by Elder (1959) : 

hu 
ICS 

(U - U) gcO) 0.4041 2. (5.19) 

In contrast, the second term of (5.18) represents both the effects of the bed 
adsorption and of retention. 

Again. as B -+ co, (5.18) rapidly approaehcs the conventional no-retention shear- 
dispersion cocffic*icnt valuc (5 19) (figure 6). As was notcd by Smith (1983), sincac the 
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bed is the region of lowest velocity and of strongest shear, the remaining contaminant 
dispersion experiences on average a reduced rate of shear dispersion. However, for a 
passive contaminant in which $ = 1 and B = 0, the bed retention effect rapidly 
dominates the conventional no-retention shear dispersion prediction. The longi- 
tudinal dispersion coefficient D is almost double the value of (5.19) for 6 = 0.1. 
Using the equivalent, retentive-layer depth estimated in the Appendix, with U/U* = 
& and k = 0.4, (5.18) gives 

D x 7.93 hu,, (5.20) 

so that, with this model, the true value of D is 26% greater than Elder's (1959) 
prediction (Chatwin 1971). 

6. Concluding remarks 
We have generalized the work of Taylor (1953) to account for dispersion of 

contaminant in the presence of both reactions and retention at the flow boundary; 
i.e. the complications caused when the contaminant is chemically active. The mass 
exchange across the flow boundary is represented by the kernel I(?), which embodies 
the totality of motion and mixing within the retentive layer. The decomposition (4.6) 
of the longitudinal dispersion coefficient reveals that  the shear dispersion coefficient 
D can be vastly increased by the presence of the boundary retention. 

For turbulent flow in an open-channel, the dispersion of a passive contaminant is 
significantly increased by the presence of the bed retention. The conventional no- 
retention longitudinal dispersion-coefficient value can almost be doubled when 6 = 
0.1, which is equivalent to a retentive layer of depth h/60. It is also found to be in 
qualitative agreement with the conclusion of Valentine & Wood (1977) that the 
longitudinal dispersion is delayed in reaching its full efficiency. 

1 wish to thank my supervisor, Dr R. Smith, who suggested the problem and 
provided continual advice, support and encouragement throughout the work. I 
should also like to thank the referees for their helpful comments. The financial 
support of an Overseas Research Student award is gratefully acknowledged. 

Appendix. Kernel I ( 7 )  for the stagnant-layer model 
For turbulent flows in open channels, the vertical mixing within the viscous 

sublayer and sufficiently close to the boundary is essentially caused by molecular 
diffusion. In  this stagnant-layer model (Purnama 1988), the equation describing the 
stagnant layer of depth I with concentration cz is 

with c = c l ,  y = 0, 

and initially, a t  t = 0, cl = 0. I n  this case of constant molecular diffusivity K ~ ,  by 
taking Laplace transform of (A la-), we obtain 
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FIGURE 7 .  The graphs of the kernel J(7) for the stagnant-layer model (-) arid the dead-zones 
model (----), 

For the Davidson & Schroter (1983) model, we have to work in the cylindrical 
coordinates and hence, the right-hand side of (A 2 )  should involve the modified 
Bcssel functions. The Laplace transform of the total flux across the stagnant layer 
is 

(A 3) 
A t a n h q l  

K1 ay cL = a, c ___. 
4 

Using the Inversion theorem, we have 

In the dead--zones model, we seek to approximate I ( 7 )  by the exponential form 

J ( 7 )  = a exp (-77). (A 5) 

If the bulk velocity and dispersion coefficient are to be correctly reproduced, then the 
weighted integrals 

1(7) d7 and J: 71(7) d7 1: 
need to be correct. Substituting for f ( 7 )  from (A 4) we arrive a t  the results: 



since 

Boundary retention effects u p o n  Contaminant dispersion 
m - 1  

x4 

96’ 
- _  - X* O3 1 - _  “ 1  : (2n+1)2 - 8 ’ : (2n+l )4  

Figure 7 shows that except near r = 0, the optimally chosen dead-zones model gives 
a good overall approximation to the stagnant-layer model. Next, from Valentine & 
Wood (1977), we deduce that 

ct = KA‘C, (A 7)  

where the (non-dimensional) entrainment coefficient K = 0.02. For a man-made 
uniform (concrete) channel, the work of Young & Wallis (1986) suggests that the 
proportion of the bed covered by dead zones A’ is of order of 0.15. The typical value 
of the molecular diffusivity for heat in water is K~ = 1.4 x m2 s-l. So for the 
discharging of hot water into an open channel, we estimate that the equivalent 
retentive layer has a depth of 

1 
h 
- = 7.54 x 10-3, 

where we have taken (cf. Chatwin 1971, $2)  h = 6.9 x m and = 0.269 ms-l. 
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